Facebook Feed

Here you find all our latest News about product development and material research

Comments Box SVG iconsUsed for the like, share, comment, and reaction icons
2 months ago
smart-elements

Optical glass beads doped with 3 mol% Iridium (Ir4+).
Material: BaP:Ir4+

Doping glasses with Iridium is a very complicated task. In the literature max. doping concentrations of 0.1mol% are mentioned. Today I was able to successfully produce stable Iridium doped Barium phosphate glass with 3 mol% Ir4+!
... See MoreSee Less

Optical glass beads doped with 3 mol% Iridium (Ir4+).
Material: BaP:Ir4+

Doping glasses with Iridium is a very complicated task. In the literature max. doping concentrations of 0.1mol% are mentioned. Today I was able to successfully produce stable Iridium doped Barium phosphate glass with 3 mol% Ir4+!
2 months ago
smart-elements

Illuminated Argon Acrylic cube. For illumination of our gases in acrylic cubes you can use a simple tesla coil. Place it close beneath the cube. ... See MoreSee Less

Illuminated Argon Acrylic cube. For illumination of our gases in acrylic cubes you can use a simple tesla coil. Place it close beneath the cube.

Comment on Facebook

I use these mini tesla coils

4 months ago
smart-elements

Antimony sulfoiodide (SbSI) exhibits very interesting properties including high photoconductivity, ferroelectricity, and piezoelectricity and can be used in solar cells to increase the efficiency (light harvesting).
On the picture: Antimony sulfoiodide (SbSI) nanorods solution.
... See MoreSee Less

Antimony sulfoiodide (SbSI) exhibits very interesting properties including high photoconductivity, ferroelectricity, and piezoelectricity and can be used in solar cells to increase the efficiency (light harvesting).
On the picture: Antimony sulfoiodide (SbSI) nanorods solution.
4 months ago
smart-elements

Selenium doped borate glass.
Barium borate glass doped with 3 mol% Selenium (using Barium Selenite). A fraction of it evaporated during melting - I needed to use a mask for safety during handling. It looks very similar to the sulfur doped glass but more brownish.
... See MoreSee Less

Selenium doped borate glass.
Barium borate glass doped with 3 mol% Selenium (using Barium Selenite). A fraction of it evaporated during melting - I needed to use a mask for safety during handling. It looks very similar to the sulfur doped glass but more brownish.
4 months ago
smart-elements

Hafnium + Sulfur doped borate glass ingot.
This is the same red glass I described a few weeks before. In the meantime I resolved most of the mystery of the origin of the color which comes actually from sulfur (sulfides). The hafnium doping (3 mol%) has no visible effect on the color but could occur as HfS2 (brown-red).
I noticed a smell of H2S when I ground and polished this glass.
... See MoreSee Less

Hafnium + Sulfur doped borate glass ingot.
This is the same red glass I described a few weeks before. In the meantime I resolved most of the mystery of the origin of the color which comes actually from sulfur (sulfides). The hafnium doping (3 mol%) has no visible effect on the color but could occur as HfS2 (brown-red).
I noticed a smell of H2S when I ground and polished this glass.Image attachmentImage attachment
4 months ago
smart-elements

Iodine doped glass.
It is possible to incorporate the highly volatile iodine into glass. Normally every attempt to try this is doomed to failure. The iodine escapes long before the glass is forming. The literature suggests to use Alkali rich glasses and add iodine or sodium iodide to glass powders which is being hot pressed @ 20 - 25 tons in a sealed platinum crucible before melting.
I tried a different way by adding high melting anhydrous rare earth triiodides to the glass mixture hoping that it would survive a few minutes in the liquid glass before evaporating. Seems an easy task, but first I needed to synthesize the iodides (200€/g was a bit too expensive for glass experiments)😉. Here is the result: The added GdI3 (in excess!) caused a slight lemon yellow coloring.
... See MoreSee Less

Iodine doped glass.
It is possible to incorporate the highly volatile iodine into glass. Normally every attempt to try this is doomed to failure. The iodine escapes long before the glass is forming. The literature suggests to use Alkali rich glasses and add iodine or sodium iodide to glass powders which is being hot pressed @ 20 - 25 tons in a sealed platinum crucible before melting.
I tried a different way by adding high melting anhydrous rare earth triiodides to the glass mixture hoping that it would survive a few minutes in the liquid glass before evaporating. Seems an easy task, but first I needed to synthesize the iodides (200€/g was a bit too expensive for glass experiments)😉. Here is the result: The added GdI3 (in excess!) caused a slight lemon yellow coloring.
6 months ago
smart-elements

Red Glass:

Update: I found out that the color does not come from Hf metal or lower Hf oxides or any other heavy metal. I made a series of glasses using the same compounds but with no addition of Hafnium. Changes in temperature and processing time resulted in different shading / color of the glass up to colorless species. Further investigation is needed 😎
... See MoreSee Less

Red Glass:

Update: I found out that the color does not come from Hf metal or lower Hf oxides or any other heavy metal. I made a series of glasses using the same compounds but with no addition of Hafnium. Changes in temperature and processing time resulted in different shading / color of the glass up to colorless species. Further investigation is needed 😎

Comment on Facebook

Please do elaborate 🔥💎👍

Wow!

6 months ago
smart-elements

Hafnium doped borate glass.

Another 'what-the-hell..' glass!! 😲 Hafnium doped borate glass should be colorless. In this case the hafnium appears in the +4 state.
I tried to get a lower Hf oxidation state and was quite surprised that the colorless liquid glass turned almost black within a few seconds and after cooling I got these mind-blowing blood red beads.
My first thought was, that this is Hf3+ or even Hf2+ but the color change by cooling reminded me of the reaction with gold ruby and Tellurium ruby glass, i.e. Hafnium nano particles!? Is this another example?
But the most surprising was the deep red luminescence under 365nm UV. I didn't find any scientific articles or mentions about it.🧐🤓
... See MoreSee Less

Hafnium doped borate glass.

Another what-the-hell.. glass!! 😲 Hafnium doped borate glass should be colorless. In this case the hafnium appears in the +4 state. 
I tried to get a lower Hf oxidation state and was quite surprised that the colorless liquid glass turned almost black within a few seconds and after cooling I got these mind-blowing blood red beads.
My first thought was, that this is Hf3+ or even Hf2+ but the color change by cooling reminded me of the reaction with gold ruby and Tellurium ruby glass, i.e. Hafnium nano particles!? Is this another example?
But the most surprising was the deep red luminescence under 365nm UV. I didnt find any scientific articles or mentions about it.🧐🤓Image attachmentImage attachment

Comment on Facebook

Obviously you had a reduction reaction there, either to nanoparticles of Hf or somehow an inferior oxidation state. What do you think had such a strong reducing power in your initial composition, what was your maximum temperature you went to?

Excellent experiment!

6 months ago
smart-elements

Another "surprise" glass: Rhenium doped Barium phosphate glass. I expected a colorless or pale yellow glass which it was when still hot. On cooling the color changed to pale blue which cannot be the +7 state of Re as stated in the literature!? ... See MoreSee Less

Another surprise glass: Rhenium doped Barium phosphate glass. I expected a colorless or pale yellow glass which it was when still hot. On cooling the color changed to pale blue which cannot be the +7 state of Re as stated in the literature!?

Comment on Facebook

NH4ReO4 will be reduced to Re nanoparticles immediately.

I think that the oxidation state of the rhenium compound does not matter in this case. I used Re powder and NH4ReO4 with same result.

This effect only occurred at higher temperatures when phosphate glasses have reducing properties. I did not manage to get more than these two beads. Re is horrible as dopant, it also evaporates relatively fast.

Those are gorgeous! It depends if you use an oxidative or reducing mixture to produce the doped barium phosphate. Also it depends what Re compound you have used..... I am planning to try Re in 3, 5, 6 and 7 oxidation state in different starting mixtures soon.

Load more